
1

Privacy enhanced smart-contract based solution

using verifiable multi ledger model

Harihara Vinayakaram Natarajan1, Prachi Gupta2, Annant Vijay Kushwaha3, and Kunal Sunil
Kasodekar4

Wipro Limited, Bangalore

1 harihara.natarajan@wipro.com, 2 prachi.gupta4@wipro.com, 3 annant.kushwaha@wipro.com,
4kunal.kasodekar@wipro.com

Abstract

In Oil and Gas Enterprises hydraulic fracturing is used to extract Oil which
produces wastewater as a by-product. The wastewater generated is disposed of
at the oil well by the truck drivers and this constitutes one trip. These
enterprises operate in remote areas with sporadic network connectivity. Hence
there may be a delay in communication between the stakeholders resulting in
delayed payment for the truck driver. In our previous paper[1], we have
proposed a solution that automates the above process using IoT devices and
blockchain (Ethereum). All the events in this process were made as an entry
onto the blockchain.

Blockchain though promotes a trustless system where every other stakeholder
can trust and validate transactions contained in blocks in a distributed
manner, but it suffers privacy limitations as the transactions containing
sensitive data is visible to all. To solve this issue, we have moved to a centralized
immutable ledger that is cryptographically verifiable. It inculcates a trust but
verify model in the system so the stakeholders can keep sensitive data that
can be audited at their end. The business logic has been implemented in smart
contracts written in DAML, which executes the trip auto settlement and
invoice generation on receiving the events. This concept of a centralized
database with a smart contract can be extended for other use cases where
data from multiple parties are involved and requires verification.

The data stored on the Ledger can be used among different stakeholders for
procuring insights to enhance the system. However, this data exchange can
lead to privacy violations hence we propose a differential privacy-based feature
for data sharing. We are handling some real-world scenarios like dropped
events, trip cancellations, and truck breakdowns, etc. We have introduced
prediction and scheduler entities to reduce waiting time by pre-allocating trips
to the truck drivers based on their preferences to promote the gig economy.

mailto:prachi.gupta4@wipro.com

2

1. Introduction

The last few years have seen a massive surge in cloud-based enterprise
applications. Cloud computing provides enterprises the ability to focus on solution
design and workflow by off- loading infrastructure and deployment concerns to
cloud-based services. This has resulted in a significant rise of FaaS and IaaS based
cloud services. Microsoft Azure is a leading cloud computing platform preferred

by such enterprises for their numerous solutions. To accommodate these many
solutions, groups within the organization are stuck with a myriad of RG’s and
resources without fine-grained control. This results in budget overruns and
ultimately revenue loss. To top it off as mentioned above Azures budget API has
a long- standing bug that prevents effective budget control. To solve these issues
we had created a naive solution as follows:

In today’s era, many enterprises operate on a coopetition-based model for mutual

growth and market sustainability. However, while collaborating in this model the
stakeholders face trust-based issues like data-verification, data-sharing, and
other privacy concerns. We have picked up the use case for the Oil and gas
enterprises that elucidates how this model can be applied for similar use cases
where multiple stakeholders are involved and transparency in the system must
be achieved.

In oil and gas enterprises, toxic water gets generated during the hydraulic

fracking method of oil drilling. It is a big concern for these enterprises to monitor
the disposal of wastewater generated at the disposal sites. These enterprises can
face legal consequences if wastewater is not disposed of properly. They operate
in the low network connectivity area and involve three main stakeholders - Fleet
Owner, Truck Drivers, and Oil field owner. Currently, they follow the
conventional method of payment and handling end to end disposal that forms a
single trip. In our earlier POC[1], we have proposed a solution that automates the
manual process using IoT devices and Ethereum based smart contracts to

orchestrate the entire process. Every event in the life cycle of the trip i.e. from the
event of wastewater generated to wastewater being dumped in the dumping well
is an entry onto the blockchain.

However, there were certain limitations in using Ethereum[2] like all the
transactions for a trip are transparent to all the stakeholders who are part of the
network causing privacy concerns. Apart from that, querying Ethereum’s smart
contract caused latency in the system. We have ported our earlier decentralized
solution to a centralized model where the transactions for a trip are stored on
Immudb[3] that can be audited and verified in case of disputes thereby
inculcating trust. Immudb is an immutable database that provides cryptographic
proof and verification of data. It is often compared with QLDB (Quantum Ledger
Database) [4] and offers better performance. It solves the data privacy and trust
issue. To implement the business logic and handle the automation, DAML’s
smart contracts[5] are used to automate the payment and invoice generation, if
still there is a dispute regarding the payment it can be verified from Immudb with
proof.

3

This paper also illustrates the use of differential privacy[6] for anonymizing the
data while sharing data among the different stakeholders. These stakeholders can
cooperate to create a mutual advantage by sharing access to insights gleaned from
collaborative data. Differential privacy can be obtained by adding randomized
noise to an aggregate query result to protect individual data without significant
changes to the result.

Some more entities like prediction and scheduler are introduced in this paper
where the pre- diction entity will predict the time in advance when the tank gets
full and scheduler entity will pre-assign the trip for the predicted data
considering parameters like location, distance, and time preference of the truck
drivers. Hence it promotes the gig economy as it gives liberty to truck drivers to
work in their preferred time and location. The process will also not be halted as
the truck driver will reach the oilfield when the tank is going to be fill. The
identification mechanism to verify stakeholders and services is proposed to be

deployed using Sovrin[7] Framework. We have also handled some outstrip cases,
if the truck driver accepts the trip but cancels later, booking of the new truck if
the truck driver doesn’t arrive at the time at the oilfield, handle truck break- down
i.e. booking a new truck if the truck stop working in a trip. The events generated
in a trip are stored locally in the mobile/IoTs devices of truck drivers, tank
operators. On availability of the network, it will give the events to their respective
owner to automatically handle the trip and invoice generation using contracts.

2. Solution Architecture

The “Single Responsibility Principle” is one of the widely adopted and reliable
principles for soft- ware design. It implies that all the things that change for the
same reason should be combined in one unit. Following the same principle, our
solution architecture adopts a microservices style pattern where each of the
services has been decomposed based on business capabilities. The ser- vices are
loosely coupled and each of them has its database. When it comes to a business

scenario like this where events change asynchronously, event-driven architecture
came out to be a workable solution. Each of the services publishes its event and
other services consume it. The intercommunication between services takes place
by the means of a pub-sub system using NATS.io[8]. The major challenge we
faced was to implement eventual consistency between services. The events are
stored in event logs in Immudb and be audited to validate the states.

4

Figure 1: Solution Architecture

2.1 Micro Services Components

The above diagram shows the modular architecture of the system. The
individuals interact with the system using their front-end/mobile application
which communicates to other services. It comprises of following services:

1. Prediction Mode/Service: This service implements AI (Artificial
intelligence) model as service to predict the time when a tank is going to be
filled. It takes various parameters for a tank in the dataset to output
prediction and the measured sensor data is used as feedback mechanism to
improve its accuracy. We have explored various models that can be deployed
in the current scenario, detailed elaboration, and pros, and cons of each
model is out of context in this paper.

2. Scheduler Service: This service provides the functionality for truck
drivers to opt-in for auto-scheduling based on their work preferences.
Scheduler service follows an uberized model to schedule trips and allot it to
truck drivers considering their preferences, nearby location constraints,
availability, the reputation of truck drivers. All the scheduled trips are
emitted at the end of the day and the trips which do not match the involved
parameters will fall into open trips that need to be booked by tank operators.

3. Oil field trip Management Service: This service consumes the

5

prediction data events and scheduler events and books the trips which could
not be scheduled. This service also man- ages all the trips and consolidates
all the events received on network connectivity from individual tank
operators’ application for a specific trip. It maintains its event logs in
Immudb that can be verified.

4. Fleet Owner Trip Management Service: This service onboards all the
truck drivers under its fleet. This manages all the trips and consolidates all
the events received on network connectivity from individual truck drivers’
application for the specific trip. It maintains its event logs in Immudb that
can be verified.

5. Contract Service: Contract service implements the ”trust but verify” model
for the automation of trip settlement and invoice generation for the
stakeholders. It consumes the events of other services and create contracts
for scheduled and open trips. The contracts are implemented in DAML
ledger that allows fine-grained permission to invoke, update, delegate the
contract updates, and read-only events for observers. It further keeps track
of the events received including the worst possibility of trip cancellation and
timeouts and takes actions accordingly to achieve reconciliation based on the
events received from the involved stake- holders. Owing to sporadic network
connectivity, some of the events might get delayed or dropped. This service
tracks those trips and waits for 2-7 days to receive events to settle the trip.

6. Pub-Sub messaging system: We have implemented event-driven
architecture where the events published by one service get consumed by one
or multiple services. For pub-sub system, we are using NATS.io that supports
in-memory and persistent storage in a disk. It can also be used as recovery
support with queue and can recover the lost data by replaying the events
from start.

7. Identification system: The identification mechanism is proposed to be
deployed using Sovrin framework. Each of the entities and services can issue
their own DIDs that can be verified by others in distributed manner. We
propose to use Hyperledger Indy to implement self-sovereign identity for all
the individual truck drivers and authenticate services.

3. Workflow

6

Figure 2: Solution Workflow

(a) The diagram below shows the event flow for the various business tasks
taking place during the disposal of wastewater. All the services are onboarded
onto the system. The identities of truck drivers will be issued and verified
using Sovrin while onboarding. The truck driver has an option to give consent
and their preference of time, distance, etc. to the scheduler entity. The
process starts with the prediction entity that will predict the tank fulfillment
time in advance for the next day. This entity will use the sensor measured data
as a feedback loop to improvise the model. After receiving the prediction, the
scheduler entity will pre-schedule the trip in advance for the truck drivers as
per their preference, who have already opt-in for the auto-scheduling with
the scheduler entity. Truck drivers can reject a trip within a limited time
duration otherwise their reputation will be compromised. The scheduler will
try to reschedule the trip considering the parameters, if it does not find any
suitable match, these trips will go into open trips that will be booked by the
oilfield owner. Contract service on listening to these scheduled trips will
create a contract with the involved entities.

(b) On other hand, the oil field owner on receiving the prediction and scheduled

trip will book the truck driver for those trips that were not scheduled by the
scheduler entity and will update the contract service through an event so that
it can create a contract with the involved entity. Once the trip has been
allotted to truck drivers, the trips start and there is a possibility that truck
drivers can cancel the trip after allotment, cannot reach the oil field at the
time, and can get a breakdown in the further trip process. All these events
are handled carefully in the implementation. All the events emitted by the
front-end application are stored locally and are received by the oil field
owner and fleet owner on network connectivity. Oil field owner and fleet

7

owner services emit these received events at the instant they are received it.
These entities will also store these events in the Immudb ledger as key-value
pair, where the data stored can be audited by any entity if any dispute arises.

(c) Contract service consumes these events to update the corresponding trip
contract to achieve settlement automatically once it receives all the relevant
events. In case of timeout or truck driver cancel a trip, the contracts created
earlier will reduce the reputation of the truck driver automatically. If the
contracts receive the breakdown events, it will generate the invoice for both
the involved drivers as per the events received. In the worst-case scenario
when events do not arrive even after the given period of 2-7 days, the events
stored in the Immudb cryptographically verified database of individual
services like oil field trip management service, fleet owner trip management
service are audited for trip parameters. When this database will be queried
for any entry then it will provide cryptographic proof for that entry and it
can be easily verified if data exists. After auditing proof, reconciliation is
achieved among the parties and an invoice is generated at the instant.

4. Challenges and Discussion

Moving from a blockchain-based solution to a centralized ledger model presented
the challenge of implementing the identification mechanism. The most common
approach to secure and authenticate web services is PKI (Public Key
Infrastructure)[9]. PKI infrastructure provides a robust infrastructure to secure
the system, but it relies on trusted CA (Certificate Authorities). These trusted
third parties manage and create identifiers and public keys for the services. Over
the years there have been many events of duplicate certificates issued, reuse of
revoked certificates, and attacks that were hard to detect as it took a long time. To
solve such problems, there has been an open-source solution like Trillian[10] that
follows the principle of trust but verifies the model. However, we were looking for
a more robust decentralized framework. DPKI (decentralized PKI)[9] that uses a
PGP encryption algorithm is an alternate approach to solve the issue. It provides
principal owners to issue unique Domain Identifiers (DIDs) and have control over
their identities. Sovrin framework makes it feasible for any service to issue its
unique Decentralized Identifier that can be used to verify its identity.

Another major change was the way we have implemented business logic in smart
contracts. In the previous solution, Solidity is the domain-specific language for
smart contracts. The state changes of contract in Ethereum occur in the accounts
whereas DAML is platform agnostic and operates with a UTXO model i.e. after
each transaction the contract is archived, and a new child contract is created in
its place with updated properties. Moreover, DAML allows fine-grained
permission for the stakeholders to have read and write access to the states defined
in the contracts as observers and signatories. While Solidity offered on-chain logic
of automation i.e. a contract can be revoked by the other contract deployed in the
same network. On the other hand, DAML offers DAML triggers that is in the
preliminary stages of development and off-chain automation is being
implemented in the service business requirements. DAML can also be plugged
into any supported blockchain framework considering the possibility of switching
back to a blockchain- based solution as per the requirement. With many
blockchains moving to use Web Assembly as it offers the ideal runtime for smart
contracts instead of EVMs, we also explored other options like Substrate ink

8

domain-specific smart contract language. Ink is written in Rust that is highly
type-safe and secure. DAML currently uses a JVM runtime environment, it can
be compiled to web assembly. However, the support for compilation is in the
initial stages.

The proposed solution has solved many of the worst possible scenarios of
rejection and time- outs by handling the appropriate events. Any changes in the
scenarios may lead to redesigning of the event architecture. The on-chain
automation may make it feasible to solve the problem, but these are currently
handled in the off-chain automation logic.

5. Conclusion

In a nutshell, the current solution deploys an end-to-end tracking mechanism on
a centralized im- mutable ledger. It automates the payment using DAML’s smart
contracts. Since DAML is nascent and some of the features like on-ledger
automation using DAML triggers are in the developing stage, so we have
implemented off-ledger automation in its place. Data stored for the separate
stakeholders can be used to bring some useful insights to make the system better
without com- promising the privacy of the users using differential privacy. The
solution can be extended to the places where there is a need for the automation
of a process, a centralized verifiable database to foster trust among stakeholders,
and need for a mechanism to share the data for the mutual growth of the system
without putting the privacy of users at risk.

References

[1] AV Kushwaha, HV Natarajan, K Jayakumaran, P Gupta, Raksha, SK Karki. (2019). “IoT
Based Blockchain Solution To Endorse Positive Human Behaviour”, ISRDC@IITB, Third
workshop on blockchain technologies and its applications.

[2] Ethereum Whitepaper. (2021). Retrieved from https://ethereum.org/en/whitepaper

[3] Immudb Introduction. (2021). Retrieved from https://docs.immudb.io/master/

[4] What is Amazon QLDB? (2021). Retrieved from https://docs.aws.amazon.com/qldb/

[5] Ameer Rosic. DAML - An open-source ecosystem for building smart contract based dis-
tributed applications. Retrieved from https://blockgeeks.com/guides/daml-an-open-
source- ecosystem-for-building-smart-contract-based-distributed-applications/

[6] Uber Privacy & Security. (2017). Uber Releases Open Source Project for Differential Privacy.
Retrieved from https://medium.com/uber-security-privacy/differential-privacy-open-source-
7892c82c42b6

[7] How Sovrin Works. (2016). Retrieved from https://sovrin.org/library/how-sovrin-works/

[8] Ginger-Collison. (2019). Publish-Subscribe. Retrieved from https://docs.nats.io/nats-
concepts/pubsub

[9] Christopher Allen, Arthur Brock, Vitalik Buterin, Jon Callas, Duke Dorje, Christian Lund-
kvist, ... Harlan T Wood. Decentralized Public Key Infrastructure. (2015). Retrieved from
http://www.weboftrust.info/downloads/dpki.pdf

[10] Verifiable Data Structures. (2021). Retrieved from https://github.com/google/trillian

"Proceedings of the Software Product Management Summit India 2021"

http://www.weboftrust.info/downloads/dpki.pdf
https://github.com/google/trillian

