
  

 
 

AI-based approach to enforce budget restrictions on 

Azure RG’s for large enterprises 

Harihara Vinayakaram Natarajan1, Kunal Sunil Kasodekar2 

Wipro  Limited, Bangalore 
 

1harihara.natarajan@wipro.com, 2kunal.kasodekar@wipro.com 
 
 
 

Abstract 

Microsoft Azure is a cloud computing platform that integrates cloud services for 
development, deployment, testing, and application management [1]. An Azure Resource 
Group (RG) is a container that holds related resources (Instance of a service) required for 
a solution. This logical division provides a way for easy control, monitoring, and billing of 
the resources required for the solution [2]. 

Many large-scale organizations have a single azure billing account but a multitude of 
resource groups with many resources, making it difficult to monitor, audit, and limit 
expenditure. This inability to effectively manage RG’s, results in groups within 
enterprises overshooting their pre- allocated budgets with no means of granular control. 
Natively azure does provide a REST-based budget API that informs the user when the RG 

crosses a specific threshold, although for the longest time it suffers from a bug wherein 
the response has a missing payload. The RG name is missing from the payload hence a 
brute-force search is required to check if the consumption is below the allocated limit. To 
tackle this issue we had implemented a naive mechanism that stores budgets in a 
database to query the actual RG using Azure’s budget API. The RG’s are queried 
periodically (once a day) and then stored in the database. However, this brute force 
method is computationally expensive and prohibitive (Especially in the case of a large 
number of RG’s). 

Hence, we propose a time-series-based prediction mechanism to enforce restrictions on 
Azure RG’s for large enterprises by forecasting which RGs maybe near their budget limit 
and need to be checked/alerted/stopped, effectively replacing a brute force search. The 
forecasting models will be supplied with a feedback loop to ensure continuous learning 
and a FaaS architecture for scalable and modular serverless deployment. This prescient 
approach provides organizations with a proactive solution for better budget monitoring 

and consumption prediction. 

Keywords: Granular control, Bruteforce, TimeSeries Forecasting, FaaS, Feedback loop 
 

 



  

 

 

1. Introduction 

 
The last few years have seen a massive surge in cloud-based enterprise applications. Cloud 
computing provides enterprises the ability to focus on solution design and workflow by off- 
loading infrastructure and deployment concerns to cloud-based services. This has resulted 
in a significant rise of FaaS and IaaS based cloud services. Microsoft Azure is a leading 
cloud computing platform preferred by such enterprises for their numerous solutions. To 
accommodate these many solutions, groups within the organization are stuck with a myriad 

of RG’s and resources without fine-grained control. This results in budget overruns and 
ultimately revenue loss. To top it off as mentioned above Azures budget API has a long- 
standing bug that prevents effective budget control. To solve these issues we had created a 
naive solution as follows: 
 

(a) An automated azure runbook stores budget details in a database during RG creation. 

(b) Periodically another runbook uses brute-force search to query all the RG’s in the 
database using Azure’s budget API. 

(c) The query returns the consumption percentages of all the RG’s and those above the 
threshold are detected. 

(d) For these detected RG’s a notification mechanism is triggered and appropriate 

action is taken. 
 

Enterprises are rapidly moving towards Low Code/No-Code platforms and the Cloud 
providers are providing the necessary building blocks to make this possible. Thus, in this 
scenario,  it is very likely that bugs will exist in the building blocks and it may  not be  the 
highest priority for the provider (Azure in our case) to fix it. However, these are the 
features that will make/break the customer offerings provided by such organizations. For 
our organization (Wipro) the feature of stopping an experiment within the allocated 

budget was very crucial for our ProtoLab service offering and hence we explored the 
easiest way to build on top of existing services. However, as this naive approach is not 
scalable and time-consuming for large organizations we have proposed a forecasting 
based solution with continuous learning to predict when the RG’s will be near their 
consumption threshold. We also realized that the model can be further used even if Azure 
fixes the bug to provide accurate predictions. This will help organizations to proactively 
monitor, manage and limit expenditure on a granular level. The prediction models will 
be deployed on Azure using FaaS. 

 
2. Related Work 

 
As per our knowledge, we were not able to find domain-specific (cloud-computing) work 
related to our current study. Most of the studies we found in other domains were related 
to budget forecasting rather than management and monitoring. None of them considered 

creating a production-level pipeline with a feedback loop to account for maintaining 
accuracy on real-life dynamic data. We reviewed this budget forecasting work in other 



  

domains ranging from Highway Construction and Underground water management 
(water budget) to generalized budget forecasting mechanisms. 

 
In 2018, M. Birylo et al. [3] used ARIMA as a Time-Series forecasting method to forecast 
water budget (underground water level) at three different locations in Poland. They were 
able to find out the key parameters affecting the future time-steps and thus their model 

was able to find a high correlation between actual and predicted values. However, the 
authors do not: include a feedback loop to account for future data-variance, provide 
solutions for effective budget management, find the best hyperparameters for the model, 
and experiment on other statistical/ML models. 
 
In 2009, Wichan Pewdum et al. [4] trained an ANN-based forecasting model to predict 
the final budget and time duration for a highway construction project on two routes in 
Thailand during the initial construction stage. They found out the key factors that affect 

the budget and trained a neural net with these parameters as the input variables. This 
AI- based method provided an accurate model with insights to construction managers 
regarding budget overruns and delays enabling early corrective action. This work also 
suffers from the same problems as above as it lacks a multi-model pipeline-based 
approach along with a feedback loop. Also, the authors have not experimented on 
different forecasting models and treat it as a toy problem rather than a production one 
capable of handling real-world dynamic data. 
 

Thus in our study, we are trying to bridge the gap between an experimental model and a 
real production scenario by incorporating a multi-model forecasting pipeline along with 
a feedback loop to prevent concept drift and maintain model accuracy across various 
organizational hierarchies. Also, unlike the other literature, we are handling the case of 
simple linear budgets and varying non-linear costs by using linear and dynamic models 
respectively to reduce operational costs. 

 
3. Research Methodology 

3.1. Synthetic Data Preparation: 

 
Cost consumption datasets for azure with genuine time-series data are not publicly avail- 
able. For experimentation, we require multiple resources with varied data points based 
on many different scenarios. As such data is not available publicly as well as within our 
organization we resorted to creating synthetic datasets. We have tried to create data 

points that mimic real-world scenarios. Such synthetic data will certainly affect the model 
accuracy but to counter this we have set-up a continuous learning-based framework to 
incorporate real data. This mechanism will certainly improve the accuracy after each 
learning cycle. For the data preparation stage, we have tried to model after some real 
azure resources. Based on our initial analysis most (Around 75%) of the resources have a 
fairly linear cost consumption trend. Hence for the first iteration of our solution, we have 
created a synthetic data generator that creates a data frame with 1 linear and 2 non- linear 
cost consumption resources. Thus, for prediction, we are considering an RG with one 



  

linear resource and two non-linear resources. We have made the following considerations 
for our models and data: 
 

Time Interval: The time sequence is generated for one month of data with an hourly 
frequency. 
 

Prediction Mechanism: Data is trained on various models wherein the best model is 
selected for deployment. Once selected, the model periodically makes forecasts with a 
feedback loop for continuous learning and to check for inconsistencies in prediction. 

3.1.1. Azure resource with Linear Datapoints 

 

To create a resource with a linearly increasing accumulated cost trend an Azure Cosmos Db 
[5] with a provisioned output is considered. All the data points for the month have the 
same cost with some random cost additions due to increased storage. We create a linear 
dataframe for this Resource by considering a base level service with 100 read units/second 
(u/s) and 10GB storage with 1 table. Minute aberrations in the data are due to spikes in 
storage costs. 

 

Figure 1: Graph for resource with linear data points 

 
 

3.1.2. Azure resource with Non-Linear Datapoints 
 

We create two non-linear data frames with different data distributions during data 
generation. The dataset for the Logic app has weekly seasonality with randomized noise 
added during each step of data production. The other dataset for the storage account has 
data- points with high variance during each time-step and no overall seasonality. 



  

3.1.3.   Accumulated Costs 

 

For this iteration of analysis, we are looking to predict which resources accumulated cost 
crosses the threshold set by the administrator. However, we can easily predict the daily cost 
and then calculate the accumulated cost by using the same set of models/pipelines. While 
plotting the accumulated cost graphs and observing the datasets for the non-linear resources 
closely we found some interesting insights. It was clear that the accumulated costs will 
show an additive increasing trend. However, we expected some aberrations and seasonality. 
However even after decreasing and increasing the randomness/deviation of the data-points 
the graphs were somewhat linear with a very small number of aberrations and changepoints 
despite high variance among data points. This lack of non-linearity was surprising and we 

will investigate this further in the future. Despite the linear nature of the accumulated costs 
in this case the models and pipeline are created for highly irregular, seasonal, time-series 
data for a generalized prediction mechanism. 

 

  
 

Figure 2: Daily costs for azure logic app Figure 3: Daily costs for storage app 

 

Figure 4: Accumulated costs for azure logic app Figure 5: Accumulated costs for storage app 

 

 
4. Solution Architecture 

In this section, we explain our solution architecture and workflow followed: 

 



  

4.1. Prediction Mechanism 

 

We will segregate the resources in the RG based on the nature of the data points. Linear and 
non- linear data are separated to apply different sets of applicable Machine learning (ML) 
models to them. This was done because a large number of the RG’s had costs that followed 

a linear trend. Hence applying irrelevant forecasting models on linear data is avoided. 
Once separated these data points will undergo transformations as required by each model 
before training. Then the models are trained, validated and the best model is selected for 
deployment using Azure ML Workspace. This workflow is carried out periodically whilst 
procuring historical time-series data for prediction. Data is ingested by the pipeline via an 
Azure Event Hub stream which will periodically procure the data points of the RG’s. 

4.2. Models used for Linear Pipeline 
 

(a) Linear Regressor[6] 

(b) MLP Regressor (MultiLayerPerceptron)[7] 

(c) Random Forest Regressor [6] 

4.3. Models used for Non-Linear Pipeline 
 

(a) Auto-Arima [7] 

(b) Exponential smoothing [7] 

(c) Fb Prophet[10] 

(d) Hierarchical time-series forecasting [7] 

4.4. Solution Outline 

 

The simplified outline for our current solution is a follows: 
1. Initially, for generating our training data an automated azure runbook queries budget  

consumption of all RG’s and stores them in CosmosDb. This will be our historical time- 
series data used for training our models. 

2. We train the models in our pipeline using a published Azure ML workspace pipeline. 
Azure Event Hub, a streaming service streams data points for ingestion to our ML 
models using a REST endpoint with various triggers. 
3. Once the models are trained they are registered in the Azure ML workspace and the 
inference configuration is setup. The entry script for the environment will ingest data 
and forecast future data points. These results are returned as JSON responses to 

CosmosDb 
4. An azure runbook compares the top “X” predictions with the ground truth (actual 
RG con- sumption) acting as a feedback loop. In case of a high RMSE error, the models 
are retrained and redeployed for the next cycle. 



  

4.5. Feedback Loop 

Any machine learning model created to emulate real-world scenarios will suffer from 
decreasing accuracy over a period of time. This is because the relationship between the 
independent features and dependent target variable may change over some time or some 
hidden dependencies may become dominant. This issue is predominant in deployed models 
with no continuous learning and is called concept drift. Thus we implement a simple 

feedback loop to counter this issue. Currently, we don’t have a full-fledged feedback loop. 
During each cycle of prediction, we will compare the RG’s presumed to have crossed the 
budget with the ground truth. Based on the judgment error we will re-train models with a 
high error percentage on new historical data. 

 
5. Results and Discussion 

For the prediction mechanism, a dictionary of linear and non-linear resources of the RG is 
created. The linear and non-linear groups are subjected to a different set of estimators 
and transformations. The Pipelines are as follows: 

5.1. Linear Pipeline 
 

Initially, the data is preprocessed to include the previous time-lag and lag-difference to 
increase the number of features for better prediction. Now a set of Scikit-learn pipelines [8] 
are created with estimators known to perform well on linear data. The estimators used are a 
linear regression model, Random forest, and Neural Network. The Pipeline iteratively trains 

the data points on these models and then models pertaining to each of these pipelines are 
evaluated to find the model with the lowest RMSE. This model will be the model that will 
be deployed for prediction. The linear regressor and neural network are highly accurate and 
give a very low RMSE error of 0.0291 and 0.0296 on our validation dataset. Surprisingly the 
random forest regressor gives a constant (wrong) output during prediction. We concluded 
this was because a random forest is an ensemble of decision trees that answers/predicts based 
on the decision of each tree. These decision trees are created based on training data, hence 
they cannot predict/regress on new/unseen data and therefore all the trees give a wrong 

answer which is averaged out for each prediction. Once all the predictions are completed 
the costs of all the resources belonging to the RG are summed up to calculate the total RG 
consumption. 

 

5.2. Non-Linear Pipeline 
 

We have two sets of competing pipelines running simultaneously and the pipeline having the 
model with better accuracy during deployment will be considered for the next cycle of 
prediction. These sets of competing pipelines use hierarchical time-series forecasting on 

one hand and staple forecasting models on the other. Theoretically, the hierarchical time- 
series model is better suited for our current data due to the inherent grouping of resources 
and RG’s. However, we have two competing pipelines because we want to test pipeline 
performance on real data in production and accordingly choose the model. Initially, the 
data is preprocessed to create a univariate time series sequence. Then the pipelines work as 



  

follows: 

5.2.1. Non-Linear Pipeline A 

 
(a) Auto-Arima 

 
A pmd.arima pipeline is created with a BoxCox transformer[12] and an Auto-Arima 

model. The box cox transformer converts the data to a normal distribution. If not 

used the model accuracy is drastically affected. The Auto-Arima model is fitted and 

the best combination of p,d,q is picked by the model itself. The model finds the best 

values of p,d,q as 0,1,2 and 1,2,2 for the logic app and storage account respectively. 

Seasonality if any is set based on week-wise data. The advantage of using a pipeline 

is that the encoding and decoding for the transformations are done by the pipeline 

itself, streamlining the whole process. Also, model fitting, prediction, and evaluation 

are simplified. The Auto-Arima model gives an RMSE value of 210.2071 for the azure 

logic app and 393.2108 for the storage account. 

 
 

 
Figure 6: Auto-Arima Prediction for logic app (Green line implies Predicted values) 

 
(b)  Exponential Smoothing (ETS) 

 

A double exponential smoothing model with an additive trend is trained to 
compensate  for the trend of increasing accumulated costs. Due to lack of seasonality 
in the data, a triple/Holts-Winter model is avoided but a parameter grid search can 
be implemented in the future to automate parameter selection for this smoothing. 
Arima and ETS are similar because both use autoregression but, ETS reduces the 
weights of the time lags exponentially. The ETS model gives an RMSE value of 
36.2866 for the azure logic app and 3.0673 for the storage account. 



  

 

 
Figure 7: ETS Prediction for logic app(Green line implies Predicted values) 

 
(c) FbProphet (FBP) 

 

FBProphet is a forecasting algorithm that uses a decomposable additive model that 
fits several linear and non-linear components. It has the capability to consider trends 
and holidays whilst deducing daily/weekly/custom seasonality. The data is initially 
normalized then the FbProphet model with default parameters is fitted on our data. 
Various observations relating to trends and seasonality are made on our data. The 
model gives an RMSE value of 0.4190 for the azure logic app and 0.1309 for the 
storage account. Thus as compared to Arima and ETS, FBP gives the best accuracy 
due to its very low RMSE value. As the default model fits several linear models for 
the time-series data and our datapoints are have a linear nature the model is highly 
accurate. 
 

The RMSE results of each resource are stored in a dictionary. So finally the best model for 
each set of the Non-Linear RG is selected for further use. Once all the predictions are 
completed the costs of all the resources belonging to the RG are summed up to calculate 
the total RG consumption. Scikit Learn pipelines require estimators/models to belong to 
the same library hence best to our knowledge it is not possible to create pipelines using 
models from different libraries. Thus creating a common unified pipeline will be a future 
goal. 
 
 

 
 

Figure 8: FBProphet Prediction for logic app (The red-lines indicate changepoints) 



  

 
 

5.2.2 Non-Linear Pipeline B 

 
In this workflow, a Hierarchical time series forecasting (HTS) is used. HTS is used when 
a time series can be naturally disintegrated into individual time series components. This 
is true in our case where we can disintegrate accumulated costs for a Resource Group into 
individual time- series components pertaining to the resources. This hierarchy can also 
be further utilized for grouping various RG’s and then finally onto the subscription. A 
hierarchy of these time-series components is created based on which a summing matrix is 
created which maintains the equalities among the nodes. The condition maintained by the 
summing matrix is that the total costs at each hierarchial node (parent node) are the sum 
of the individual time-series (child node). Then a time- series model of choice (Arima/ETS 
etc) is fitted to each of these time sequences based on various conditions. We use HTS to 
create a time-series prediction model for our Resource group and resources individually 
instead of summing the individual time series manually. This provides for a faster, 
granular level of data prediction mechanism. Two methods of HTS are currently used: 

 
(a) Bottom Up: An Auto-Arima model is fitted for all the children nodes (Resources). 

The data is then integrated up to the root node i.e the RG Costs. 

(b) Top Down: An Auto-Arima model is fitted for the root node (RG costs) only. The 
data is then disintegrated to individual children nodes i.e the resources. For the 
diagram below A = Accumulated cost for the RG, CL = Linear Resource, and CN = 
Non-Linear Resource. The metrics and forecasts for these hierarchical model are as 
follows: 

 
This way we create a time-series forecasting model for all the nodes whilst maintaining 
the hierarchy by either using a top-down or bottom-up approach. When using HTS we 
don’t require 
 

         
 

Figure 9: Metrics (Bottom-up)  Figure 10: Metrics (Top-down) 
 



  

 

 
       Figure 11: Forecast (Bottom-up)        Figure 12: Forecast (Top-down) 

 
to calculate the total cost’s for the RG as the parent node has a time-series model for these 
accumulated costs. 

 

5.3. Challenges 

 

One challenge we are currently facing is managing RG’s with multiple budget thresholds. 
Many RG’s have actions set up for various thresholds (like 65%, 75%, 90%, etc.) rather than 
a singular restriction during any given cycle of forecasting. While creating the training 
dataset we can include a parameter for percentage budget consumption w.r.t to the initial 
threshold. RG’s with a high percentage of budget consumption can be given preference for 
prediction. We can train an ML model to predict the cycle period for our forecasting 

mechanism. It will take into account features like RG budget consumption, feedback 
regarding missed RG prediction, and output the optimum cycle period. Also, we need a 
mechanism to prevent resources with persistent storage for code/important data to be 
removed from consideration for budget management/actions. Thus we are only looking to 
deprovision the compute. To prevent this, we are looking to flag these types of RG’s during 
the RG creation stage so the runbooks will not fetch data from them. Also, these flagged 
entities will be ignored by our prediction pipelines. To reduce computation overhead we 
consider only the top “X” forecasted RG’s for budget management. During each cycle, scripts 

will run to predict RG’s that would have crossed the budget limit or are near it. Then the 
top results (based on accuracy) will be compared with the actual consumption (ground 
truth) of the RG’s and accordingly further actions and feedback loops will be applied. 
However, what if RG’s not belonging to these top results cross the threshold? Thus we need 



  

to devise a mechanism to tackle this problem. One solution we propose is to predict the “X” 
number of RG’s using an ML model that takes parameters such as accuracy, current 
consumption, prediction cycle length, etc into consideration. This way we can make sure all 

the RG’s near the budget threshold are predicted. Another option can be to define an event 
listener that listens to the notifications after the predictions and finds out RG’s that were 
missed. This data can be used as an input parameter for a feedback loop that dynamically 
changes the period of the prediction mechanism and encompasses the maximum number of 
RG’s with budget overruns. Our final goal is to deploy our model in pro- duction, so rather 
than focusing on fast training with static data points (a methodology followed in ML 
research) we are looking to devise a workflow with dynamic data and fast inference with 
low latency. Our main focus is not creating a state of the art model but satisfying different 

objectives imposed by various stakeholders. 

 

 
 

Figure 13: Model Workflow



  

Currently, we are using a simple feedback loop but we are looking to improve it in the 
future along with testing the solution on a large number of RG’s with varied data points. We 
are also looking to use better deep-learning models (like LSTM) for more accurate time-series 

prediction and incorporate it by using an improved end-to-end pipeline. 

 
6. Conclusion 

Large scale enterprises are rapidly moving towards a cloud-based architecture due to its 
lucrative offerings like Low Code/No-code services. Microsoft Azure is at the forefront of 
this revolution, however, it lacks fine-grained resource control and suffers from a long-
standing bug that prevents effective budget control resulting in budget overruns and 
revenue losses. It is imperative to develop a solution to solve these issues for such large scale 
organizations. To tackle these problems we have proposed a time-series-based forecasting 
solution that predicts the top “X” number of RG’s that will cross the budget threshold. We 

have implemented a competitive multi-pipeline-based approach to select the best models 
pertaining to real data in production. We have also used a feed-back loop to ensure 
continuous learning to reduce model error over a period of time. We are using Faas 
architecture for a scalable, serverless, and modular approach. Thus our solution provides a 
proactive approach for better budget monitoring and consumption prediction using a 
multi-pipeline-based prediction mechanism. 

 
7. Future Roadmap 

In the next iteration of development we are looking to resolve the current issues plaguing the 
system along with: 

 

1. Designing a fully functional end-to-end pipeline for prediction with an im- proved 

feedback loop 

2. Calculating time saved by using our prediction model over brute force based search 

3.  Observing the effect of increasing the number of instances along with tweaking other 
system parameters. 

4. Setting a limit on the number of instances for prediction along with budget 
management 

5. Using deep learning-based models for time-series prediction 

6. Testing the solution on a large scale with inherent feedback-loops and different types of 
synthetic datasets. 



  

 

 

References 

 

[1] Get started guide for Azure developers. (2019). Retrieved from https://docs.microsoft.com/ 
en-us/azure/guides/developer/azure-developer-guide 

[2] Manage Azure Resource Manager resource groups by using the Azure portal. (2019). 
Retrieved from https://docs.microsoft.com/en-us/azure/azure-resource-
manager/management/ manage-resource-groups-portal 

[3] M. Birylo, Z. Rzepecka, J. Kuczynska-Siehien, J. Nastula; Analysis of water budget prediction 
accuracy using ARIMA models. Water Supply 1 June 2018; 18 (3): 819830. doi: 
https://doi.org/10.2166/ws.2017.156 

[4] Pewdum, W., Rujirayanyong, T. and Sooksatra, V. (2009). ”Forecasting final budget and 
duration of highway construction projects”, Engineering, Construction and Architectural 
Management, Vol. 16 No. 6, pp. 544-557. https://doi.org/10.1108/09699980911002566 

[5] Pricing calculator. (2021). Retrieved from https://azure.microsoft.com/en-in/pricing/ 
calculator/ 

[6] Sklearn LinearRegression. (2021). Retrieved from https://scikit-learn.org/stable/modules/ 
generated/sklearn.linear model.LinearRegression.html 

[7] Neural network models (supervised). (2020). Retrieved from https://scikit-
learn.org/stable/ modules/neural networks supervised.html 

[8] Ensemble methods. (2020). Retrieved from https://scikit-
learn.org/stable/modules/ensemble. html 

[9] Hyndman, R.J., & Athanasopoulos, G. (2018). Forecasting: principles and practice, 2nd 
edition, OTexts: Melbourne, Australia. OTexts.com/fpp2 

[10] Quick Start. (2021). Retrieved from https://facebook.github.io/prophet/docs/quick 
start.html 

[11] sklearn.pipeline.Pipeline. (2020). Retrieved from https://scikit-learn.org/stable/modules/ 
generated/sklearn.pipeline.Pipeline.html 

[12] Stephanie Glen. (2015). Box Cox Transformation. Retrieved from https://www. 
statisticshowto.com/box-cox-transformation/ 

 

"Proceedings of the Software Product Management Summit India 2021" 

 

http://www/

